How can Massachusetts be running out of water?

(The basics of stream-aquifer interaction)

Peter Weiskel, Ph.D. U.S. Geological Survey Northborough, MA

Massachusetts Stream Flow Conference April 29, 2005

Massachusetts is "water rich", right?...

• Abundant precipitation, moderate ET

- Consumptive use typically < 5% of baseflow on a longterm average basis
- So what's the problem?

Here's the problem:

- 1. Water availability (recharge) is highly seasonal; affects stream baseflow
- 2. Consumptive water use is seasonal and out of phase with recharge, affecting storage and baseflow.
- 3. Aquifer storage is often quite limited; affects baseflow
- 4. Water is exported downstream (or out of basin) after use.
- 5. Consciousness regarding flow and habitat has been raised (a good thing, not a problem).

1. Water availability: The annual streamflow cycle

Green River– Western MA, steep basin, till dominated, frozen soils in winter Quashnet River– Coastal MA, flat basin, sand-dominated, temperate winter

2. Water Use: The annual cycle

Upper Charles Basin, 1989-98 average withdrawals & returns

3. Aquifer Storage:

A key aspect of our geologic setting...

Map from:
USGS Ground
Water Atlas of the
United States

3. Aquifer Storage:

- Glacial valley aquifers-- limited storage
- Outwash plain aquifers--large storage
- Massachusetts has both...

3. Aquifer Storage:

Upper Charles River Basin

- Thin, discontinuous sand & gravel deposits
- In contact with streams,
 lakes, and wetlands

(DeSimone and others, 2002)

Streamflow depletion—one possible result of these interacting factors...

1. Pre-development

3. Induced infiltration

(Zarriello and Ries, 2000)

Management solutions generally entail some combination of the following:

- 1. Increase recharge to aquifer.
- 2. Bring water use into phase with the recharge cycle (reduce summer consumption).
- 3. Reduce use of streamside wells in the summer; use aquifer (or reservoir) storage *away* from stream.
- 4. Don't export water downstream or out of basin.

Models are useful for testing various options

Basin modeling: Ipswich River at South Middleton

Simulation results for:

No withdrawals, undeveloped land use

No withdrawals, 1991 land use

1989-93 withdrawals, 1991 land use

Ipswich River Basin:

Has raised our consciousness regarding flow and habitat...

Ipswich River near Reading, Mass., summer 1999

A question to ponder...Will Eastern Massachusetts become like Western Kansas?

Kansas perennial streams:

1961

1994

U.S. Department of the Interior U.S. Cardinalcal Survey

Simulation of Ground-Water Flow and Evaluation of Water-Management Alternatives in the Upper Charles River Basin, Eastern Massachusetts

Water-Recognises Investigations Report ID-ICS

in cooperation with the MASSAD-LUSCITS OFFWATHIENT OF ENVIR MASSAD-LUSCITS OFFWATHIENT OF ENVIR

A Precipitation-Runoff Model for Analysis of the Effects of Water Withdrawals on Streamflow, Ipswich River Basin, Massachusetts

Water-Resources Investigation Report 00-9029

Proposed in cooperation with the MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL MANAGEMENT, and the

U.S. Department of Interio

USGS Basin Modeling and Habitat Reports:

http://ma.water.usgs.gov

(click on publications)